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Various numerical methods are employed in order to approximate the nonlinear 
Schrodinger equation, namely: (i) The classical explicit method, (ii) hopscotch method, (iii) 
implicit-explicit method, (iv) Crank-Nicolson implicit scheme, (v) the Ablowitz-Ladik 
scheme, (vi) the split step Fourier method (F. Tappert), and (vii) pseudospectral (Fourier) 
method (Fornberg and Whitham). Comparisons between the Ablowitz-Ladik scheme, which 
was developed using notions of the inverse scattering transform, and the other utilized 
schemes are obtained. 

1. INTRODUCTION 

The nonlinear Schrodinger (NLS) equation describes a wide class of physical 
phenomena (e.g., modulational instability of water waves, propagation of heat pulses 
in anharmonic crystals, helical motion of a very thin vortex filament, nonlinear 
modulation of collisionless plasma waves, self-trapping of a light beam in a color- 
dispersive system [ 1 I). The NLS equation was investigated numerically by Karpman 
and Krushkal 121, Yajima and Outi [3], and Satsuma and Yajima [4], Tappert [S 1 
and Hardin and Tappert 161. In the latter two works the NLS equation was integrated 
by the split-step Fourier method. As discussed in part I Ablowitz and Ladik 17 1 
found nonlinear partial difference equations (based on the inverse scattering 
transform) which can be used as a numerical scheme for the NLS equation. This 
scheme has certain desirable properties [ 8 ] (see part I). 

This work aims to compare the Ablowitz and Ladik scheme and other known 
numerical methods for the NLS equation 

is, = qxx + 2 /41* 9. (1.1) 

Roughly speaking numerical methods for obtaining solutions to initial value problems 
fall into two categories [9]: (1) finite difference methods and (2) function approx- 
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imation methods. For the finite difference methods we seek approximation qr to the 
original function q(x, t) at a set of points x,, t, on a rectangular grid in the X, t 
plane, where x, = hn, t, = km, h is the increment in x, and k is the increment in t. By 
expanding function values at grid points in a Taylor series, approximations to the 
differential equation involving algebraic relations between grid point values can be 
obtained. The function approximation method approximates the exact solution q(x, t) 
by an approximate solution defined on a finite dimensional subspace 

q(x, t) x q’(x, t) = $ CJt) Qi(X). 
i-l 

(1.2) 

The Qi(x) are appropriately chosen basis functions. Common choices for these are 
the trigonometric functions, leading to a finite Fourier transform or pseudospectral 
method and piecewise polynomial functions with a local basis, giving the finite 
element method. 

The following numerical methods were applied to the NLS equation. 
1. Finite difference methods. 

(a) Explicit methods. 
(i) The classical explicit method. 
(ii) The hopscotch method [ 101. 

(b) Implicit methods. 
(i) Implicit for the linear part and explicit for the nonlinear part (implicitex- 

plicit). 
(ii) Crank-Nicolson implicit scheme. 

(iii) The Ablowitz and Ladik scheme. 
2. Finite Fourier transform or pseudospectral methods. 

(i) Split step Fourier method [6]. 
(ii) Pseudospectral method by Fornberg and Whitham [ 111. 

In order to compare schemes, our approach for comparison is to (a) fix the 
accuracy (L,) for computations beginning at t = 0 and ending at t = T; (b) leave 
other parameters free (e.g., At or Ax) and compare the computing time required to 
attain such accuracy for various choices of the parameters [ 121. 

These methods are applied to the NLS equation (1.1) subject to the following con- 
ditions: 

(A) THE INITIAL CONDITIONS 

(i) 1-Soliton Solution 
The exact solution of (1.1) on the infinite interval is 

q(x, t) = 2qep i125x-4([*~~2)t+(~0+“/2)1 sech(2vx _ *Q/q _ x,), (1.3) 

where x,,, q, < and w,, are constants. 
For initial conditions, Eq. (1.3) is used at t = 0, and the constants are chosen to be 

x,,=O, w,,=O, <= 1, and ~=0.5, 1,2, and 3. 
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(ii) Collisions of Two Solitons [ 131 
The exact solution of (1.1) on the infinite interval is 

q(x, f) = G(x, t)/F(x, 4, 

where 

F(x, t) = 1 + a(4 l*> exp(r, + rll*) + 41,2*) exp(rl, + vi+) 

+ 4&l *> exp(v2 + 7;“) + 4V*) exp(r12 + 7:) 

+ a(l,2, 1*, 2*) exdvI + vz + rl:’ + rz*), 

G(x, t) = exp(r,) + exp(rA + 4LZ l*> exp(v, + v2 + vi? 

+ 4LL 2*) exph + v2 + v2*), 

a(i,j*) = (Pi + Pj*), 

u(i,j) = (Pi - Pj)‘? 

u(i*,j*) = (Pi* - Pj*)2, 

u(i,j, k*) = u(i,j) u(i, k*) u(j, k*), 

u(i,j, k*, I*) = u(i,j) u(i, k*) u(i, Z*) u(j, k*) u(j, I*) u(k*, I*), 

where * implies a complex conjugate, and 

?yj=PjX-Qjt+‘, Oj= iP:, 
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(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

where Pj and rj”’ are complex constants relating respectively to the amplitude and to 
the phase of the ith soliton. 

For initial conditions, Eq. (1.4) is used at t = 0, and three different sets of 
parameters are studied: 

(i) P, = 1 - 0.25i, P, = 0.5 + O.l5i, ~‘1” = -2 and r:“’ = 0, 

(ii) P, = 2 - 0.5i, P, = 1 + 0.75i, ~1” = -2 and qr’ = 1.0, 

(iii) P, = 4 - 2i, P, = 3 + i, qi”’ = -9.04, ‘1;” = 2.1. 

FIG. 1. Initial condition (1.3), q = 0.5 (i.e., amplitude = 1). 
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FIG. 2. Initial condition (1.3), q = 2 (i.e., amplitude = 4). 

(B) BOUNDARY CONDITIONS 

Periodic boundary conditions are used. The period is chosen to be [-20, 201 in the 
case of small amplitudes and I-10, 101 in the case of relatively higher amplitudes. 
(See Figs. (1) and (2).) 

The numerical solution is compared with the exact solution. In addition, two of the 
conserved quantities are computed, namely, j 1 q I2 dx, and J’(I q I4 - /aq/ax I ‘) dx. 

2. THE REPRESENTATION OF THE NLS EQUATION USING NUMERICAL METHODS 

1. FINITE DIFFERENCE METHODS 

(A) EXPLICIT METHODS 

(i) The Classical Explicit Method 

Using the classical emplicit method with central difference in time (for stability), 
the finite difference representation of Eq. (1.1) is 

mtl iq, -4y = 4;+1-%::+d-1 
2At (Ax)* 

+ 2(q2):: 4,“. 3 (2.1) 

where InI <p, and m > 0. 
It is easily shown that this method is linearly (dropping the nonlinear term) stable 

for At/(Ax)2 ,< l/4. The truncation error of this scheme is of order (O((At)*) + 
WW*D 

(ii) A Hopscotch Scheme 

The NLS equation (1.1) can be approximated by 
(a> an explicit scheme: 

rnil pn -s::= 4nm-,-24::+4~+1 
At (Ax)* 

+ I(l4liL>‘4~-1 + (lslY+J2s~+,1~ (2.2) 
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(b) an implicit scheme: 

The hopscotch scheme applies Eq. (2.2) at odd values of (n + m) and (2.3) at even 
values of (n + m). This combination makes (2.3) explicit. If we write Eq. (2.3) for 
m = m - 1, and substitute the resulting equation into (2.2), the explicit scheme (2.2) 
(after the first time step) may be replaced by 

(2.4) 

This scheme has truncation error of order (O((At)2) + O((Ax)‘)), and it is uncon- 
ditionally stable according to linear analysis. 

(B) IMPLICIT METHODS 

(i) Implicit-Explicit Method 
The Crank-Nicolson scheme is used to approximate the linear part and an explicit 

average is used for the nonlinear part of the Eq. (1.1). The scheme is 

WI+1 pn -9," 
At l Is51 =2(dx)z 

- 29:: t qy-, + 9;:; - 29:+ ’ + SZI 

The scheme is unconditionally stable according to linear analysis. The truncation 
error is of order (O((At) + O((Ax)‘)). To implement this scheme, a quasi-tridiagonal 
system of equations is required to be solved at each time step. An optimization of the 
Gaussian elimination method is introduced to solve this system. (See Appendix A.) 
We carry out the elimination procedure only once and use back substitution 
thereafter. 

(ii) Crank-Nicolson Implicit Scheme 

The difference scheme for representing Eq. (1.1) is 

mt1 pn -4:: 
At =-J-y 14nm+t 

264x) 
-22q::+q~_,+q~,+,‘-29~+‘+9~~,ll 

This scheme is also unconditionally stable according to linear analysis. The trun- 
cation error of this scheme is of order (O((At)‘) + O((Ax)‘)). 
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We briefly remark on how we solve (2.6). Rewrite Eq. (2.6) as 

-;q:i: + (i+A)q;+‘-+q;;, 

=~{q~+I+q,-,}+(i--l)q::+Ail(lq~+ll)2q::”+(l4::l)24::‘}, 

n=-N ,..., N, (2.7) 

and 

~=dt 
2(Ax)’ ’ 

where the solution is sought in the region (-NAx < x < NAx) X (t > mdt, 
m = 1, 2,...). From the periodic boundary conditions, we have q?“, = q: and 

m m qN+ 1 = qeN+ 1 for all m. Therefore, by applying Eq. (2.7) at each mesh point (i.e., 
n = -N + l,..., N), we can write the totality of equations as 

where 

A= 

and 

A I. 
-- . . . -- 

2 2 
i+l 

m+l_ Q - 

CNf I 1 I 

qN 

j = -N + l,..., N. 

CW 

ntl 

(Isj”l>‘qjml~ 

(2.9) 
The right-hand side of Eq. (2.8) is a function of known values of q at the previous 
time level (t = mdt) and unknown values of q at the new time level (t = (m + 1) At). 
We use an iteration technique to solve the system (2.8), and we assume (only in the 
right-hand side) the values of qr+’ = qy to start with. Therefore the right-hand side 
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becomes known, and we use the same optimization of the Gaussian elimination 
method for (2.5) to solve the system (2.8). The resulting values of q at the new time 
level are substituted in the right-hand side of Eq. (2.8) to start the new iteration, and 
we solve the new version of (2.8) by the previous method. We iterate until the con- 
dition 

max Iqr+‘,k -qF+‘*k+‘l < tolerance 

n = -N,..., N 

(where k is the number of iterations) is satisfied. The iteration procedure is repeated 
at each new time level. The qF+lqk+ ’ will be the approximated solution at the point 
(ndx, (m + 1) dt). 

(C) THE ABLOWITZ AND LADIK SCHEME 

The scheme is 

WI-t1 pn -4:: 
At 

(2.10) 

where 

and 

s,m=qp$:, +qp+,qkm’,q;+‘- =(q:+‘)*Y 
A; = (1 + (Ax)* q:+‘q;+‘*)/(l + (Ax)* q:q:‘), 

This is a global scheme, unconditionally and nonlinearly stable, and the truncation 
error is of order (O((At)*) + O((Ax)*)). A local scheme (with the same truncation 
error) from (2.10) can be obtained if the sum terms are zero and the product terms 
are equal to one. 
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It is convenient to implement (2.10) as follows. Write the new time level equation 
as 

(2.11) 

where 

2i(Ax)* 
&=T, l&/4 1 

(At is supposed to be of the same order as Ax) 

and 

B, = -q;+ 1 -d-1 +(2-&)q:: 

- sz-, I ( 
(AxI * -- 

2 
q;(q,m*q;+, +4::+“9:t+:) 

(2.11) is solved by a version of the Crank-Nicolson back and forth sweep method for 
the heat equation [ 14, 15 1. We seek an equation of the form (at the new time level) 

4 ?I+1 = aq, + b, (2.13) 

suitable for computing q explicitly by sweeping to the right. For stability we require 
Ial < 1. Repeated substitution into (2.11) to eliminate q,,+ 1 and q, in favor of q,-, 
gives 

b, + [a - (2 + E)] b,-, + [ a*-(~+E)u+ l]qn-,=B,. (2.14) 

Requiring the qn- I term to drop out determines a (uniquely since 1 a) < 1) as a 
solution of 

a~-(2+&)u+1=0 

and leaves for 6, a first-order difference equation. 

(2.15) 



NONLINEAR EVOLUTION EQUATIONS, II 211 

The corresponding homogeneous equation of (2.14) has a solution of the form 

b, = k”, (2.16) 

where the constant k satisfies 

k + [a - (2 + E)] = 0. (2.17) 

It can be shown that the solution k of (2.17) corresponds to the second root (other 
than a < 1) of the quadratic equation (2.15) determining a above, and that 1 kl > 1. 

It follows that b can be computed explicitly by sweeping to the left, 

b -ab,-aB,. n-1 - (2.18) 

To obtain the solution q,, first solve for b, from (2.18) then use (2.13) to calculate 
qn. In order to calculate the b’s, we use an iteration procedure. We assumed that 

T+’ = q: in Eq. (2.12) and b, = 0 to start with, and then we apply the Gauss-Seidel 
ichnique [16] (’ m which the improved values are used as soon as they are computed) 
to calculate the rest of the b’s. The calculated value of the b,v (= b_,) is used to start 
the new iteration, and the iteration procedure is repeated until the condition 

max 1 b,- , - (ab, - aB,)j < tolerance 

n=-N N ,..., 

is satisfied. Then we use the above procedure by sweeping to the right by means of 
(2.13) to obtain the q’s. After the calculations of the q’s, we substitute their values 
instead of qF+ ’ in Eq. (2.12), and repeat the same procedure to calculate the b’s and 
then the q’s. This procedure is repeated until the condition 

max IqT+‘yk - qy+‘3k+‘l < tolerance 

n = -N,..., N 

(where k is the number of iterations) is satisfied. The qy+‘gk+’ will be the approx- 
imated solution at the point (ndx, (m + 1) dt). 

2. FINITE FOURIER TRANSFORM OR PSEUDOSPECTRAL METHODS 

(i) Split Step Fourier Method [6] 

For convenience the spatial period is normalized to 10, 27~1, then equation (1.1) 
becomes 

(2.19) 
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where P is half the length of the interval of interest, and X = (x + P) z/P. (Here we 
take P to be 20 or 10 depending on the calculation.) This interval is discretized by N 
equidistant points, with spacing dX = 27c/N. The function q(X, t), numerically defined 
only on these points, can be transformed to the discrete Fourier space by 

q^(k, t) = Fq = --& ‘g; q(jAX, r) ~~~~~~~~~~~ 

k=-; ,..., -l,O, l,..., ;- 1. 

(2.20) 

The inversion formula is 

q(jAX, t) = F -- ‘$ = ’ __ \‘ gk, t) e2niiklsC, 

dti f 
(2.21) 

k=-; ,..., -l,O, l,..., ;- 1. 

These transforms can be performed, efficiently with the fast Fourier transform (FFT) 
algorithm [ 171. Following [ 61 in order to apply the split step Fourier method for 
Eq. (2.19) we (a) advance the solution using only the nonlinear part: 

ii, = 2 141’ 4. (2.22) 

This can be solved exactly, 

c&Y, t) = e -- 2ilq(X,0112fq(x, o), (2.23) 

where 4(X, t) is a solution of Eq. (2.22) and q(X, 0) is the solution of Eq. (2.19) at 
I = 0. (b) advance the solution according to 

7L2 
191 = -j- 4x,% P 

by means of the discrete Fourier transform 

q(X,, r + At) = F~‘(eik*A’~Z’P?‘(q-(~j, t))). (2.25) 

This method is second order accurate in At and all order in Ax, and is uncon- 
ditionally stable according to linear analysis. 

(ii) Pseudospectral Method (Fornberg and Whitham) [ 111 

This is a Fourier (pseudospectral) method in which q(x, t) is transformed into 
Fourier space with respect to x, and derivatives (or other operators) with respect to x 

are then made algebraic in the transformed variable. Again for convenience the 
spatial period is normalized to [0, 2x]. With this scheme, qXX can be evaluated as 
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F-‘{i*k*F(q)}. Combined with a leap frog time step the NLS equation (2.19) is then 
approximated by 

- 4iAt lq[* q. (2.26) 

Using the ideas of Fornberg and Whitham we make a modification in approximating 
Eq. (2.19), 

q(X, t + At) = q(X, t -At) + 2iF- ’ (sin t$$ At) F(q(x, I))) 

-4iAtlq1’q. (2.27) 

The difference between Eqs. (2.26) and (2.27) is in the approximation of the linear 
Eq. (2.24). The linear part of Eq. (2.27) will be exactly satisfied for any solution of 
Eq. (2.24) (see [ 111). Also it turns out that Eq. (2.26) is linearly (dropping the 
nonlinear term) stabe for At/(Ax)* < l/n*, while Eq. (2.27) is unconditionally stable 
according to linear analysis. 

3. CONCLUSIONS 

Various numerical methods are used in order to approximate the NLS equation 
(1.1) namely; (i) The classical explicit method (2.1), (ii) hopscotch method (2.2), 
(2.3), (iii) implicitexplicit method (2.5), (iv) Crank-Nicolson implicit scheme (2.6), 
(v) The Ablowitz and Ladik scheme (2.10), (vi) The split step Fourier method (2.23) 
(2.25) and the (vii) pseudospectral method of Fornberg and Whitham (2.27). We 
obtain a comparison between the Ablowitz-Ladik scheme and the other utilized 
schemes. Our approach for comparison is to (a) fix the accuracy (~5,) for 
computations beginning at t = 0 and ending at t = T, (b) leave other parameters free 
(e.g. At, or Ax), and compare the computing time required to attain such accuracy for 
various choices of the parameters. For the comparison two sets of initial conditions 
are studied: (A) I-soluton solution with different values of the amplitude, (B) 
Collisions of two solitons with different values of the parameters. According to this 
approach we have made the following conclusions: 

(1) The schemes explicit (i), implicit-explicit (iii), and the hopscotch (ii) take 
more computing time than the other schemes ((iv, (v), (vi), (vii)) and the difference in 
the computing time increases as the amplitude increased. The hopscotch method (ii) 
takes less computing time than the other two methods ((i), (iii)) for the 1-soliton 
cases, while the explicit (i) method took less computing time than the hopscotch (ii) 
and the implicit-explicit (iii) methods for the 2-soliton cases. 
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(2) The previous three methods; explicit (i), hopscotch (ii), and implicit+x- 
plicit (iii) do not appear in Tables I, IV, and VII since extremely long computing time 
would be required. 

(3) The Crank-Nicolson implicit method (iv) takes more computing time than 
the Ablowitz-Ladik (local and global) method, the split step Fourier method and 
Fornberg-Whitham method in the case of 1-soliton, and it becomes comparable with 
the Ablowitz-Ladik local scheme for high amplitudes. In the case of 2-solitons, 
Crank-Nicolson takes less computing time than the Ablowitz-Ladik local scheme. 

(4) The Ablowitz-Ladik global scheme takes more computing time than the 
local scheme in the case of small amplitudes, but for high amplitudes it is roughly 
five times faster than the local, and the Crank-Nicolson schemes. 

(5) The pseudospectral method is roughly two times faster than the 
Ablowitz-Ladik local scheme for small amplitudes, but it is much faster for high 
amplitudes. This method is roughly two times faster than the Ablowitz-Ladik global 
scheme for high amplitudes. This method only proves to be faster than the split step 
Fourier method for small amplitude 2-soliton cases. 

(6) The split step Fourier method is faster than all the utilized methods for 
small and large amplitudes for the 1-soliton case. In the average it is three times 
faster than the Fornberg-Witham method. Also it proves to be faster than the 
Fornberg-Whitham method for high amplitude 2-soliton cases. The tables and figures 
exhibit the results. 

As a conlcusion we find that the split step Fourier method is the best method for 
the NLS equation, followed by the pseudospectral method then the Ablowitz-Ladik 
global scheme. However we believe that if we were able to go to very high amplitudes 
(our machine capability prevented this) the Ablowitz-Ladik global scheme would 
improve dramatically and would prove to be better than the other methods. However 
it should be noted that the NLS equation is quite unusual in the sense that the 
nonlinearity is especially simple. This has a dramatic effect in the split step Fourier 
method-see Eq. (2.22)-which means that both steps admit to essentially exact 
methods. Generally this will not be true (see paper III). We also note that whereas the 
Ablowitz-Ladik scheme is O((dt)*, (Ax)‘) the split step Fourier and Fornberg- 
Whitham methods are of order O((dt)‘, (Ax)~) for all p. (See also the calculations for 
the KdV equation in paper III.) It is also worth mentioning that we have tried the 
sweeping technique in implementing the implicit-explicit and the Crank-Nicolson 
methods, and found that it did not affect the overall conclusions. 

All the numerical calculations are inspected at every step by using the conserved 
quantities jl q 12 d X, and ] (1~1" - l~Yq/8xl') dx (Tables I-VII). The two conserved 
quantities are calculated by means of Simpson’s rule [ 181. In the finite difference 
schemes we have discretized U, by using a central difference approximation. In the 
Fourier methods the derivatives are calculated using Fourier method. The 
Ablowitz-Ladik global scheme is the only utilized scheme which has an infinite 
number of conserved quantities. It is worth mentioning that we calculated the L, 
error norm and found that it reflects the same conclusions as the L, norm. 
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FIG. 3. Displays the computing time (E) which is required by each utilized method given in Table I. 
I-soliton, amplitude = 1. 

FIG. 4. Displays the computing time (E) which is required by each utilized method given in 
rable II. I-soliton, amplitude = 2. 
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1. Impilcii (Crank-Nicolsonl. 
2. Split step Fourier method. 
3. The Rblowitz and Ladik local scheme. 
4. The Rblowitz and Ladik global scheme 
5. Fornberg and Whitham method. 

FIG. 5, Displays the computing time (E) which is required by each utilized method given in 
Table III. 1-soliton, amplitude = 4. 

1. ,mp,,c,t (Crank-Nlcolsa”] 

:: 
Split step Fourier method. 
The Ablow~tr and Ladik locai scheme 

4. The Ablowitz and Ladik global scheme 
5. iarnberg and Whitham method 

Method 

FIG. 6. Displays the computing time (E) which is required by each utilized method given in 
Table IV. I-soliton, amplitude = 6. 
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18 
t 

:: 
3. 
4. 
5 
6 

8 

FIG. 7. Displays the computing time (E) which is required by each utilized method given in 
Table V. Two solitons with amplitudes 0.5 and 1. 

*’ Each unit in time E 2 minutes 

FIG. 8. Displays the computing time (E) which is required by each utilized method given in 
Table VI. Two solitons with amplitudes I and 2. 
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I E 

1 2 I 4 

1. Implicit (Crank-Nicolson). 
2. Split step Fourier method. 
3. The Ablowitz and Ladik local scheme. 
4. The Ablowitz and Ladik global scheme 
5. Fornberg and Whitham method. 

Method t 

l : Each unit in time i 5  minutes. 

FIG. 9. Displays the computing time (E) which is required by each utilized method given in 
Table VII. Two solitons with amplitudes 3 and 4. 

APPENDIX A: AN OPTIMIZATION OF GAUSSIAN ELIMINATION 

This method seeks to optimize Gaussian elimination by eliminating unnecessary 
storage and multiplication by zeros. To begir 
system 

d, u, a 

4 4 ~2 

UN-1 

P 1 d N-1 N 

1 we have the : 

b, 

b, 

b N 

owing quasi-tridiagonal 

Instead of storing the N x N matrix, we store the augmented matrix in an N x 4 
matrix whose elements are the tridiagonal elements and the bi’s. We then perform 
Gaussian elimination on the N x 4 matrix keeping in mind their original locations in 
the matrix. When this is done we have an upper triangular matrix and an original 
system is of the form 
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where * values are the updated elements. Using back substitution we obtain the 
solution. The total number of operations required to obtain the solution using this 
method is (1 W-15). The same idea can be applied to quasi-pentagonal system of 
equations and so on. 
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